Directed Growth of C60 Nanowhiskers for Millimetre-Wave Detectors

نویسندگان

  • Michael P. LARSSON
  • Stepan LUCYSZYN
چکیده

The formation of C60 nanowhiskers via the liquid-liquid interfacial precipitation technique presents a low-cost means of fabricating nanostructured fibres for use as active or passive elements in a number of possible applications. Recent measurements [9] have reported encouraging electrical characteristics that indicate the possibility of using C60 nanowhiskers to realise electronic devices with switching or sensing capabilities. In this work, we focus on one application in particular – millimetre-wave power detectors. Traditional detectors based on Schottky junctions have difficulty impedance matching over very wide video bandwidths, in addition to insensitivity to very low power signals and high susceptibility to thermal and shot noise. C60 nanowhiskers offer the possibility of realising low-cost, robust, sensitive millimetre-wave detectors with significantly reduced shunt capacitance and improved noise performance. Before this can be achieved, however, techniques are needed to control growth parameters and eliminate assembly through in-situ growth. Here, results are presented showing the influence of DC electric fields on C60 molecules and nanowhiskers. Early indications suggest that alignment parallel to DC electric fields is possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of fullerene nanowhiskers using the liquid–liquid interfacial precipitation method and their mechanical, electrical and superconducting properties

Fullerene nanowhiskers (FNWs) are thin crystalline fibers composed of fullerene molecules, including C60, C70, endohedral, or functionalized fullerenes. FNWs display n-type semiconducting behavior and are used in a diverse range of applications, including field-effect transistors, solar cells, chemical sensors, and photocatalysts. Alkali metal-doped C60 (fullerene) nanowhiskers (C60NWs) exhibit...

متن کامل

Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers.

Sensing infrared radiation is done inexpensively with pyroelectric detectors that generate a temporary voltage when they are heated by the incident infrared radiation. Unfortunately the performance of these detectors deteriorates for longer wavelengths, leaving the detection of, for instance, millimetre-wave radiation to expensive approaches. We propose here a simple and effective method to enh...

متن کامل

Effect of Nonlinear Phase Variation in Optical Millimetre Wave Radio over Fibre Systems

In this paper, we propose an optical millimetre wave radio-over-fibre (mm-wave RoF) system that uses a dual drive Mach Zehnder modulator (DD-MZM), which is biased at the maximum transmission biasing point, to generate an optical double sideband-suppressed carrier. The input to the DD-MZM are binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8-phase shift keying (8-PSK) and...

متن کامل

DC Characterisation of C60 Whiskers and Nanowhiskers

C60 whiskers exhibit increasing conductivity with decreasing diameter. At diameters of 1 μm and below, a single-crystal structure predominates, and enhanced electrical characteristics are expected; however, no supporting data exists in the literature. Here, results of four-point probe measurements on C60 whiskers and nanowhiskers with diameters in the range 650 nm to 1.3 μm are reported for the...

متن کامل

Adsorption of amino acids by fullerenes and fullerene nanowhiskers

We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006